2.2. Механизмы поддержания кислотно-основного состояния организма

 Основные механизмы элиминации кислых продуктов жизнедеятельности следующие: буферирование, экскреция СО2 легкими и экскреция фиксированных кислот почками.

Буферные системы. Главным буфером плазмы и интерстициальной жидкости является бикарбонат (НСО3). В клетках тканей, эритроцитах преобладают белковая буферная система (включая гемоглобин, частично определяющий буферные свой­ства внеклеточной жидкости) и фосфаты. Фактором, определяю­щим равновесие между буферными системами, является рН. В качестве материала для изучения и оценки активности буфер­ных систем организма в клинической практике исследуется кровь. В известной мере это ограничивает возможность сужде­ния о буферных свойствах белков и фосфатов, но вместе с тем обеспечивает возможность оценки главного буфера — бикарбо­ната и, следовательно, оценки всего кислотно-основного ба­ланса.

Для простоты буферные системы крови могут быть разде­лены на две группы: бикарбонатную и небикарбонатную (гемо­глобин) буферные системы. В соответствии с этим буферирование и транспорт угольной кислоты (в виде НСО3) может про­исходить при участии небикарбонатных буферных систем по следующей схеме:

Н2СО3 + Буфер→Буфер + НСО3

СО2 поступает из тканей в легкие главным образом в фор­ме бикарбоната плазмы, образовавшегося внутри эритроцита в процессе буферирования угольной кислоты гемоглобином. Оставшаяся часть существует в крови в виде карбаминовых соединений и растворенной СО2. Эти реакции в легочных ка­пиллярах происходят в обратном порядке, и СО2 экскретируется легкими со скоростью, определяемой темпом ее образования в организме.

Буферирование фиксированных кислот происходит с участи­ем бикарбонатного буфера в форме образования угольной кис­лоты:

 

Н+ + НСО3 →Н2СО3

или с участием небикарбонатного буфера:

Н+•Буфер—                  →            Н • Буфер

Буферные основания   Буферные кислоты

 

Продукция эндогенных Н+ (т. е. фиксированных кислот) мо­жет буферироваться как бикарбонатной, так и небикарбонатной буферными системами, в результате чего буферные основания превращаются в буферные кислоты. Восполнение теряемых при этом буферных оснований прямо зависит от способности дистальных почечных канальцев синтезировать бикарбонат. Это непременное условие выделения Н+ почками.

В процессах буферирования фиксированных кислот бикарбонатная система количественно является наиболее важной.

В каждой цельной буферной системе (т. е. смеси слабой кис­лоты и ее соли с сильным основанием) соотношение между кис­лотным и основным компонентами не равнозначно. Так, в би­карбонатной системе:

Именно этим отношением (т. е. явным преобладанием основ­ного компонента над кислотным) и определяется величина рН, равная в норме 7,4. Как известно, концентрация свободных водородных ионов в бикарбонатной буферной системе может быть вычислена по формуле:

где К — константа диссоциации.

После логарифмирования это уравнение может быть записа­но так:

где рН= — lg [H+]; рК=— IgK. Это уравнение называется урав­нением Гендерсона — Гассельбалха.

2СО3] может быть заменен выражением Рсо2-0,03, так как Н2СО3 находится в равновесии с растворенной СО2, которая в свою очередь .находится в равновесии с альвео­лярным или тканевым Рсо2. В представленном выражении 0,03 [ммоль/(л-мм рт. ст.)] является коэффициентом раство­римости СО2 в плазме при 37 °С.

Следовательно:

Так как в нормальных условиях рК составляет 6,1, а [НСО3~] 25 ммоль/л и РСО2 40 мм рт. ст., то:

Отсюда ясно, что при увеличении содержания угольной кислоты в организме отношение  станет меньше, чем 20:1, логарифм этого отношения станет меньше 1,3 и рН сни­зится, что будет отражать степень возникшего ацидоза. На­оборот, при увеличении содержания основной соли (бикарбонат) в крови отношение  станет большим, чем 20: 1, логарифм отношения i-----L-l_ увеличится до 1,4—1,5, рН возрастет до 7,5—7,6, что будет характеризовать степень возник­шего алкалоза.

         Эта же формула позволяет понять, что снижение рН возможно не только при увеличении содержания Н2СО3, но и при уменьшении содержания НСОз отношение (), а возрастание рН возможно не только при увеличении содер­жания в крови бикарбоната, но и при уменьшении содержания угольной кислоты (отношение

 

Дыхательная регуляция КОС. Основная роль легких в от­ношении кислотно-основного гомеостаза состоит в экскреции СО2 и стабилизации РСО2 артериальной крови (Расо,) около . 40 мм рт. ст. При нормальной функции легких альвеолярное Рсо2 и Рас0; фактически идентичны. Экскреция СО2 равна продукции СО2. Следовательно:

где К — коэффициент пропорциональности.

Дыхательный центр быстро реагирует на малейшие изме­нения РаСО2, поэтому всякие изменения продукции СО2 в организме сопровождаются соответствующими изменениями аль­веолярной вентиляции.

Почечная регуляция КОС. Почки участвуют в регуляции КОС путем стабилизации содержания [НСО3] плазмы на уров­не, близком к 22—26 ммоль/л. Основной механизм почечной регуляции связан с выведением Н+ через клетки почечных ка­нальцев, образующихся из угольной кислоты, а также с за­держкой Na+ в канальцевой жидкости (моча). Конечный ре­зультат зависит от характера буфера в канальцевой моче. Каждый миллимоль Н+, экскретируемых в форме титруемых iкислот и (или) ионов аммония (NH4+) добавляет в плазму крови 1 ммоль НСО3. Таким образом, экскреция Н+ тесней­шим образом связана с синтезом НСО3. Количество синтези­руемого бикарбоната обычно достаточно, чтобы пополнить из­расходованное на нейтрализацию титруемых кислот и на буферирование эндогенного Н+. При расстройствах КОС почки могут регулировать экскрецию Н+, чтобы поддержать необхо­димую концентрацию его во внеклеточной жидкости или чтобы восстановить нарушенный его баланс.

Почечная регуляция КОС является медленным процессом, требующим часов и даже дней для полной компенсации, и лишь финальным этапом элиминации кислот из организма.

Существуют четыре возможных варианта расстройств кислотно-основного состояния: респираторные ацидоз и алкалоз, метаболические ацидоз и алкалоз (табл. 2.2).

Респираторные расстройства КОС начинаются с изменений Рсо2. Для компенсации включаются буферные или почечные механизмы, которые приводят к изменениям концентрации НСО3, способствующим восстановлению рН до исходных (хотя не всегда нормальных) величин.

Метаболические расстройства вызываются изменениями со­держания в плазме НСО3. Они индуцируют дыхательный от­вет, который приводит к компенсаторному (или вторичному) изменению РСО2, в результате чего восстанавливается исходный (или нормальный) уровень рН. Таким образом, компенсаторные реакции не являются самостоятельными (или независимыми) изменениями КОС, а представляют собой непременную и ин-

тегрированную часть всего кислотно-основного баланса. Ком­пенсаторные сдвиги КОС развиваются, как правило, немедлен­но и продолжаются (если сохранены резервы организма) до восстановления нормального кислотно-основного баланса, что выражается в нормализации рН.

 

   

Купить программу

       

Информация

       

Медицинские книги

       

Медицинские программы

       

Форум

   ●    

 Surgerycom

   ●    

RSS-лента