1.1. Общая вода организма и водные среды
Вода составляет примерно 60% массы тела нормального здорового мужчины (около 42 л при массе 70 кг). У женщин больше жира, меньше мышц и общее количество воды равно примерно 50%. У детей содержание воды в организме выше, чем у взрослых. С возрастом содержание ее постепенно уменьшается.
На рис. 1.1 представлена общая схема распределения воды в организме. Различают два главных водных сектора: внутриклеточный, вода которого составляет примерно 30—40% массы тела (около 28 л у мужчин при массе 70 кг), и внеклеточный — примерно 20% массы тела (около 14 л). Внеклеточный объем воды распределяется между интерстициальной водой (15—16% массы тела, или 10,5 л), в которую входит также вода связок и хрящей, плазмой (около 4—5%, или 2,8 л), лимфой и трансцеллюлярной водой (цереброспинальная и внутрисуставная жидкости, содержимое желудочно-кишечного тракта), не принимающей активного участия в метаболических процессах.
Рис. 1.1. Распределение воды в организме.
1—плазма (4,5% массы тела);
2 —интерстициальная жидкость и ли и фа (12%);
3— вода плотных тканей и хрящей (4,5%);
4 — необменная вода костей (4,5%);
5 — внутриклеточная вода (33%);
6 — трансцеллюлярная вода (1,5%);
7 — плотные ткани (40%).
Внеклеточная жидкость омывает клетки и является транспортной средой для метаболических субстанций, обеспечивающих нормальную жизнедеятельность клеток. Через нее в клетку проникают кислород, различные вещества из крови и желудочно-кишечного тракта и выводятся продукты метаболизма клетки, которые затем попадают в кровь и экскретируются легкими, почками и печенью.
Плазма — часть внеклеточной жидкости — служит средой для эритроцитов, лейкоцитов и тромбоцитов. Содержание белков в плазме примерно 70 г/л, что значительно превышает содержание их в интерстициальной жидкости (10—30 г/л). На долю чистой воды в плазме приходится в связи с этим 93% объема, т. е. несколько меньше, чем в инстерстициальной жидкости.
Интерстициальная жидкость представляет собой жидкость внеклеточного и внесосудистого пространств (вместе с лимфой). По определению С. Bernard, это «внутреннее море», в котором активно живут клетки.
Строго говоря, интерстициальное пространство заполнено не свободно перемещающейся жидкостью, а гелем, удерживающим воду в фиксированном состоянии. Основу геля составляют гликозаминогликаны, преимущественно гиалуроновая кислота. Таким образом, интерстициальная жидкость является транспортной средой, а точнее, фиксированным «перевалочным пунктом», который благодаря своему статичному состоянию не позволяет растекаться по организму транспортируемым субстратам, движущимся от капилляров к клеткам, и, следовательно, концентрирует эти субстраты в нужном месте.
Значение интерстициального пространства невозможно оценивать и обсуждать без упоминания о лимфатической системе. Лимфа по существу является составной частью интерстициальной жидкости и предназначена в основном для транспорта химических крупномолекулярных субстратов, главным образом белков, а также (частично) жировых конгломератов и углеводов из интерстициального пространства (куда они проникают из клеток) в кровь. На терминальных концах лимфатических сосудов имеются клапаны, которые регулируют этот процесс. Движение лимфы по сосудам осуществляется за счет насосного действия миоэндотелиальных волокон, функционирующих синхронно с клапанным аппаратом, расположенным по всей длине лимфатического сосуда. Лимфатическая система обладает также концентрационной функцией, поскольку осуществляет реабсорбцию воды в зоне венозного конца капилляра.
Быстрое удаление белков из интерстициального пространства снижает тканевое коллоидно-осмотическое давление (КОД). Этот механизм вместе с насосной функцией лимфатической системы обеспечивает слабоотрицательное гидростатическое давление (около 6 мм рт. ст.) в интерстициальном пространстве [Guyton А. С. et al., 1971]. Значение отрицательного давления в интерстициальном пространстве переоценить невозможно, поскольку оно не только определяет клеточную архитектуру, но и создает оптимальные условия для жизнедеятельности клеток. При отечных состояниях, когда отрицательное давление в интерстициальной жидкости нивелируется, клеточная архитектура нарушается. Отрицательное давление в интерстициальном пространстве является также гарантией постоянства интерстициального водного объема, предупреждает накопление излишних объемов жидкости и, наконец, улучшает условия метаболизма, поскольку сближает поверхности сосудистой и клеточной диффузионных мембран.
Факторами, повышающими интерстициальное давление, являются: увеличение внутрикапиллярного давления и снижение КОД плазмы, возрастание интерстициального КОД и, наконец, повышение проницаемости капилляров. Сначала влияние названных факторов компенсируется усилением лимфатического тока, иногда в 10—50 раз [Hillman K., 1990]. С исчерпанием компенсирующего лимфатического механизма интерстициальное давление поднимается выше нуля. При этом в интерстициальном пространстве накапливается большое количество жидкости. Отношения между давлением и объемом жидкости в разных зонах интерстициального пространства неодинаковы, поскольку различные ткани имеют разную степень податливости, растяжимости (compliance).
Примерно те же механизмы определяют динамику легочного интерстициального пространства. Однако легочное капиллярное давление ниже и легочные капилляры относительно легко пропускают молекулы белка. Вместе с тем движение лимфы по легочным лимфатическим сосудам осуществляется быстрее из-за выраженного пульсирующего характера кровотока в близрас-положенных легочных кровеносных сосудах. В целом же относительная величина легочного интерстициального пространства значительно меньше тканевого и альвеолярный легочный эпителий может противостоять давлению со стороны интерстиция не выше 2 мм рт. ст. При превышении этого значения начинается отек легких. В норме жидкость не накапливается в интерстициальном пространстве легких благодаря описанным насосным механизмам.
Трансцеллюлярную жидкость охарактеризовать одним определением невозможно, поскольку ее специфика обусловливается локализацией. В целом по составу она близка к интерстици-альной жидкости и плазме, включает электролиты и белки в различных сочетаниях. Общий объем цереброспинальной и суставной жидкости в организме равен примерно 300—400 мл. В норме объем жидкости, находящейся в каждый отдельный момент в желудке, кишечнике, желчном пузыре, желчных и панкреатических ходах, также невелик, хотя проходящий через желудочно-кишечный тракт объем жидкостей составляет 8— 10 л/сут. Объем трансцеллюлярной жидкости составляет 0,5—1% массы тела.
Общие направления перемещений воды между средами организма представлены на схеме 1.1.
ремещение воды между средами организма
Хотя в практических целях принято считать, что объем внеклеточной жидкости составляет 20—22% массы тела, он может значительно увеличиваться при голодании, тяжелых инфекционных заболеваниях, травме, сепсисе и раке, т. е. при тех состояниях, которые сопровождаются потерей значительной части мышечных масс. Объем внеклеточной жидкости увеличивается также при отеках (сердечные, безбелковые, воспалительные, почечные и др.), беременности.
При ожирении относительный объем внеклеточной жидкости меньше. Он уменьшается также при всех формах дегидратации, особенно при потере солей. Существенные нарушения объема внеклеточной жидкости наблюдаются при критических состояниях у хирургических больных. Такие состояния возникают у оперированных или неоперированных больных в результате перитонита, панкреатита (особенно его некротической формы), геморрагического и септического шока, кишечной непроходимости, кровопотери и тяжелой травмы, при которой могут развиться практически все синдромы, характерные для критических состояний. Наиболее часто при этом страдает объем внеклеточной жидкости. Конечной целью регуляции жидкостного и электролитного баланса у тяжелобольных являются поддержание и нормализация сосудистого и интерстициального» жидкостных объемов, их электролитного и белкового состава. В клиническрй практике только этим путем можно влиять на водный и электролитный состав клеточного пространства, как бы оно ни изменилось.
Поддержание и нормализация объема внеклеточной жидкости и ее состава являются также основой для регуляции артериального и центрального венозного давления (ЦВД), нормализации сердечного выброса, почечного, печеночного, мозгового и коронарного кровотока, наконец, кровообращения всего организма, его микроциркуляции и поддержания биохимического гомеостаза.
● |
● |
● |
● |
● |
● |
● |
● |